Panaga School Calculation Policy

January 2020

Rationale

This policy outlines and models the progression of the written strategies used at Panaga School for addition, subtraction, multiplication and division. It has been developed in line with the 2014 National Curriculum of England which embeds a Concrete, Pictorial and Abstract (CPA) approach. Manipulatives (concrete apparatus) and pictorial representations that support the strategies taught are also represented. This model enables teachers to ensure consistency in the approaches children meet through the primary years. It allows children to progress stage by stage through models and representations they recognise from previous teaching. This enables the development of deeper conceptual understanding and fluency. Teachers will present strategies and equipment that is appropriate to children's level of understanding, supporting children to move forward at the pace appropriate to them. Each class will maintain a pace of learning at age appropriate levels with differentiation considerations as required.

The importance of mental mathematics

This policy focuses on written calculations in mathematics however it is important to recognise that mental strategies and known facts form the basis of all written calculations. The following outline some of the key skills and number facts that children are expected to develop throughout the school.

To add and subtract successfully, children should be able to:

- recall all addition pairs to $9+9$ and number bonds to 10
- recognise addition and subtraction as inverse operations
- add mentally a series of one digit numbers (e.g. $5+8+4$)
- add and subtract multiples of 10 or 100 using the related addition fact and their knowledge of place value (e.g. $600+700,160-70$)
- partition 2 and 3 digit numbers into multiples of 100, 10 and 1 in different ways
(e.g. partition 74 into $70+4$ or $60+14$)
- use estimation by rounding to check answers are reasonable

To multiply and divide successfully, children should be able to:

- add and subtract accurately and efficiently
- recall multiplication facts to $12 \times 12=144$ and division facts to $144 \div 12=12$
- use multiplication and division facts to estimate how many times one number divides into another etc.
- know the outcome of multiplying by 0 and by 1 and of dividing by 1
- understand the effect of multiplying and dividing whole numbers by 10,100 and later 1000
- recognise factor pairs of numbers (e.g. that $15=3 \times 5$, or that $40=10 \times 4$) and increasingly able to recognise common factors

Panaga School Calculation Policy

January 2020

- derive other results from multiplication and division facts and multiplication and division by 10 or 100 (and later 1000)
- notice and recall with increasing fluency inverse facts
- partition numbers into $100 \mathrm{~s}, 10$ s and 1 s or multiple groupings
- understand how the principles of commutative, associative and distributive laws apply or do not apply to multiplication and division
- understand the effects of scaling by whole numbers and decimal numbers or fractions
- understand correspondence where n objects are related to m objects
- investigate and learn rules for divisibility

Doodle Maths

The school subscribes to Doodle Maths to support the development of mental maths skills for all students from P2- P7.

Doodle Maths adapts to meet children's current ability and knowledge. It facilitates frequent practice and also provides help and support to learners.

The app's mantra is "little and often". Children are prompted to complete a short selection of tasks each day. These cover various topics and, following a short assessment task, are chosen to keep children's knowledge fresh and to address weaknesses.

Parents and teachers can both be linked with each child's account allowing them to monitor and influence the progression through the app's challenges. Either a downloadable app or a web-based service is used to do so. In these, you can allocate extra exercises to children that concentrate on a specific maths topic. This mixes the best of both worlds: the constant tailoring to the individual's ability made by the app and a teacher's professional knowledge.

ADDITION

Step 1

Pupils use concrete objects and tens frames to explore number bonds to 10. Extend to crossing 10.

$00 ; 0$	$\begin{aligned} & 4+6=10 \\ & 10=4+6 \\ & 6+4=10 \\ & 14+6=20 \end{aligned}$			
Step 2 Using number lines to count in ones. $7+5=\square$				
n				

Step 3

Written method, no regrouping. Combine ones to find the total.

Written method with regrouping.
Combine ones to find the total.

Step 5

Partitioning the single digit to bridge through 10.

Eg. $37+8$
$37+8=45$
(3) (5) $37+3=40$
$40+5=45$

Step 6
Sequencing to add using a numberline.

Step 7

Column addition, no regrouping.
32+26=
32
$\underline{26}$
50
$\underline{88}$
$\underline{58}$ add tens and ones

Step 8

Column addition with regrouping.
$38+47$

70 add tens
15 add ones

Step 9

Formal written method, no regrouping.

Step 10
Formal written method with regrouping.

Estimate	H T O
$328 \approx 330$	328
$516 \approx 520$	$\frac{516}{85}$
850	$\frac{844}{1}$

Step 11

Formal written method with decimals using place value first, no regrouping.
$1.35+1.2$
1.35
$+\underline{1.20}$
$\underline{2.55}$

Step 12
Formal written method with regrouping.

TH H T O.Ths	Ths-10 ths for 1
5256.9	Ones-10 ones for 1 ten
5167.8	Tens- 10 tens for 1 hundred
10424.7	Add thousands

SUBTRACTION

Step 1

Use concrete objects to subtract 1 digit numbers from numbers between 10 and 20. Progress to crossing 10.

Step 2
Using number lines to count back in ones.
12-5 = 7

Step 3
Written method, no regrouping.
Subtract ones from a 2 digit number.

Step 4 and 5

Written method with regrouping.
Subtract a 1 digit number from a 2 digit number.
$35-8=$
Regroup 1 ten from 35 to 10 ones, making 15 ones

Progress to subtracting 2, 2 digit numbers.
$73-46=$

Step 7

Partitioning to subtract a 2 digit number from a 2 digit number.

Subtracting a 3 digit number from a 3 digit number using base 10 .
$243-128=115$

	Step 9	
Formal written method, no regrouping.		
		x ${ }^{\text {a }}$
$355 \approx 350$	355	
$124 \approx 120$	124	
230	$\underline{230}$	

Step 10

Formal written method: expanded column method with regrouping. 463-125

		$\left\|\begin{array}{c\|} 10 \\ \|l\| l \mid \\ x \times \end{array}\right\|$	$\mid \underbrace{1}_{\substack{x \\ x x x}}$	3 cannot subtract 5, regroup 1 ten to make 13
40056013				
-100 205				
$300 \quad 30 \quad 8$				
	300	30	,	

Step 11

Formal written method using decimals, confirming place value. 1.35
-0.60
0.75

Step 12

Extend steps 10 and 11 to numbers with any given number of digits and decimal numbers with 1 or 2 DP.

161	2.1
13844	-3.59
-968	$\underline{1.68}$
$\underline{406}$	$\underline{1.91}$

IMITPLCLCATON

Step 1

Doubles, use concrete objects and pictorial representations.


```
Might be
recorded as:
\(2+2=4\)
```

$4+4=8$

Step 2

Repeated addition and arrays 2, 5 and 10 times tables.

Step 3

Repeated addition along number lines.
$3 \times 5=15$

Progress step 2 and 3 to 6,9 and 12 x tables.

Step 4

Arrays and commutativity using known facts to make new facts.

$$
4 \times 6=24
$$

$6 \times 4=24$

Step 5

Multiplying by 10 , use place value sliders to model how numbers move left when multiplied by 10 .

5×10

H T U. ths hths $\measuredangle 5$ 50
Progress to multiplying by $100,1000$.
Step 6
Regrouping using cherry model.
$12 \times 3=$

Step 7

Array to grid method.
34×3
Model using concrete objects.

Step 8

Commutative law using factor pairs. $18 \times 5=3 \times 6 \times 5$
$3 \times 6 \quad 3 \times 6$
3×6

It could also be $2 \times 9 \times 5$.
Step 9
Expanded multiplication progressing to short multiplication.
23
342
$\frac{\mathrm{x6}}{18}(6 \times 3)$
$120(20 \times 3)$$\xrightarrow{\text { progress to }} \begin{aligned} & \text { short multiplication }\end{aligned} \frac{\mathrm{x7}}{\frac{2394}{21}}$
138

Step 10

Long multiplication.
Th H T O
8136
x72
16272 (multiply by ones)
569520 (multiply by tens)
$\underline{585792}$ (add the 2 products together)

Step 11

Multiply one digit numbers with up to 2 decimal places, by whole numbers. Estimate answer first.
$3.71 \approx 4 \rightarrow 4 \times 8=32 \quad 0$ ths hths
Answer less than 32.3 .71
$\times 8$
29.68

Step 12
Progress steps 9, 10 and 11 to larger multi-digit numbers.

DIVISION

Step 1

Sharing - Use concrete objects and pictorial representations to share items equally into 2 groups.

Step 2
Grouping - 15 children at a picnic, a picnic table seats 5 children. How many tables do they need?

Model on a beadstring counting in 5 s

15	\div	5	$=$	3
number divided by seats on equals tables needed				

Step 3
Arrays - 16 flowers, planted in 4 rows.
How many flowers in each row? Use arrays to show the answer.

Step 4

CPA - Division by grouping using arrays. 30 eggs, 10 fit into each box. How many boxes are needed?
\square
Concrete
Step 5
Repeated Subtraction
$20 \div 4=5$
$20-4-4-4-4-4=0$
Step 6
20 divided into ${ }^{8}$ groups of 4 equals 5^{20}

Steps 1, 2, 4 progress to division with remainders- 42 apples. 10 fit in a box. How many boxes?

```
0000000000000000000000000000000000000000000000
0000000000 box 1
0000000000 box 2
0000000000 box 3
0000000000 box4
OO
42\div10=3r2
```


Step 7

Sharing 2 digit numbers by ones with regrouping.
$55 \div 4=12$ r 3

Step 8

Partitioning - Moving towards a formal written method.
$72 \div 3=24$
$(60+12) \quad\|2\|=60+12$

$$
60 \div 3=20 \quad 12 \div 3=4
$$

$$
20+4=24
$$

Step 9

Progress steps 7 and 8 to sharing multiple digits by ones with regrouping.
$532 \div 4=133$

Division with remainders.
1995 - 9
How many groups of 9 can you make?

Model as a short division.

221 R6

Step 11

Long division - Regrouping hundreds to tens.
$426 \div 3=142$
Progress to
decimals and remainders.

	1	4	2
(3)	4	2	6
	3	1	
	1	2	
	1	2	
		0	6
			6
			0

